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ABSTRACT
This paper analyzes the worst-case efficiency ratio of false-
name-proof combinatorial auction mechanisms. False-name-
proofness generalizes strategy-proofness by assuming that a
bidder can submit multiple bids under fictitious identifiers.
Even the well-known Vickrey-Clarke-Groves mechanism is
not false-name-proof. It has previously been shown that
there is no false-name-proof mechanism that always achieves
a Pareto efficient allocation. Consequently, if false-name
bids are possible, we need to sacrifice efficiency to some ex-
tent. This leaves the natural question of how much surplus
must be sacrificed. To answer this question, this paper fo-
cuses on worst-case analysis. Specifically, we consider the
fraction of the Pareto efficient surplus that we obtain and
try to maximize this fraction in the worst-case, under the
constraint of false-name-proofness. As far as we are aware,
this is the first attempt to examine the worst-case efficiency
of false-name-proof mechanisms.

We show that the worst-case efficiency ratio of any false-
name-proof mechanism that satisfies some apparently minor
assumptions is at most 2/(m + 1) for auctions with m dif-
ferent goods. We also observe that the worst-case efficiency
ratio of existing false-name-proof mechanisms is generally
1/m or 0. Finally, we propose a novel mechanism, called
the adaptive reserve price mechanism that is false-name-
proof when all bidders are single-minded. The worst-case
efficiency ratio is 2/(m + 1), i.e., optimal.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multi-agent systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Theory, Economics, Design

Keywords
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1. INTRODUCTION
In a combinatorial auction, multiple goods are simultane-

ously for sale, and, in general, bidders can express arbitrary
valuation functions over subsets of the goods. This allows
bidders to express substitutability and complementarity of
goods in their valuations. The recent book by Cramton et
al. [3] gives a thorough survey of the theory and practice of
combinatorial auctions.

One desirable characteristic of an auction mechanism is
that it is strategy-proof. A mechanism is strategy-proof if, for
each bidder, declaring his/her true valuation is a dominant
strategy, i.e., an optimal strategy regardless of the actions
of other bidders. The revelation principle [12] states that
we can, without loss of generality, restrict our attention to
strategy-proof mechanisms if we require implementation in
dominant strategies. In other words, if a certain property
(e.g., Pareto efficiency) can be achieved using some auction
mechanism in a dominant-strategy equilibrium, i.e., by a
combination of dominant strategies for the bidders, then the
property can also be achieved using a strategy-proof auction
mechanism.

It can be argued that using a strategy-proof mechanism
is especially advantageous in Internet auctions, where we
need to worry about the privacy of the bids. For exam-
ple, if we use the first-price sealed-bid auction, which is not
strategy-proof, then the bids must be securely concealed
until the auction ends. On the other hand, if we use a
strategy-proof mechanism, then an individual bidder does
not care to know the others’ bids; consequently, such secu-
rity issues become less critical. The Vickrey-Clarke-Groves
(VCG) mechanism is a strategy-proof mechanism that can
be applied to combinatorial auctions (resulting in what is
also known as the Generalized Vickrey Auction). We say
that an auction mechanism is Pareto efficient when the sum
of all participants’ utilities (including that of the auction-
eer, who receives the payments)–i.e., the social surplus–is
maximized in a dominant-strategy equilibrium. The VCG
mechanism always satisfies Pareto efficiency.

However, declaring valuations untruthfully is only one way
to manipulate the mechanism. Another way is for one bidder
to pretend to be multiple bidders. Such false-name bids [17]
are especially feasible in Internet auctions due to their rel-
ative anonymity. False-name bids are bids submitted under
fictitious names, e.g., multiple e-mail addresses. This type
of manipulation is very difficult to detect, since identifying
each participant on the Internet is virtually impossible.

We say a mechanism is false-name-proof if, for each bidder,
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declaring his true valuation function using a single identifier
is a dominant strategy (even though the bidder can choose
to use multiple identifiers). However, the VCG mechanism
is not false-name-proof [17]. Hence, it cannot be used to
achieve a Pareto efficient allocation if false-name bids are
possible. In fact, no false-name-proof mechanism satisfies
Pareto efficiency [17]. Therefore, we need to sacrifice ef-
ficiency to some extent when false-name bids are possible.
This leaves the natural question of how much surplus must
be sacrificed. As far as we know, there has not yet been any
theoretical analysis of this question.

There are several ways to proceed. One is to take a
Bayesian perspective and construct a mechanism that max-
imizes expected surplus based on the prior distribution from
which bidders’ private values are drawn. Indeed, combi-
natorial auctions and similar problems have recently been
studied from the Bayesian perspective [6, 4, 10]. However,
in this paper, we take a prior-free approach: we focus on
worst-case analysis. Specifically, we consider the fraction
of the Pareto efficient surplus that we obtain and then we
try to maximize this fraction in the worst-case, under the
constraint of false-name-proofness.

Worst-case analysis is commonly used in the recent mech-
anism design literature, especially by computer scientists.
Several recent papers focus on maximizing the profit of an
auction according to a worst-case competitive analysis (see
[13] as an extensive survey). Other work tries to redistribute
as much revenue back to the bidders as possible according
to a worst-case criterion [7, 11]. The loss of efficiency in net-
work games due to selfish user behavior has been studied in
terms of the “price of anarchy [14]” and the “price of stabil-
ity [1].” Furthermore, Archer, Tardos, Talwar and others [2,
8] study a hiring-a-team problem. Significant insight can be
gained from an understanding of worst-case performance.
It allows an uninformed or partially informed auctioneer to
evaluate the trade-off between an auction based on assump-
tions about the distribution of bidder valuations (which may
or may not be correct), and an auction designed to work as
well as possible under unknown and worst-case market con-
ditions.

Let us briefly describe the organization and the main con-
tributions of this paper. First, in Section 2, we formal-
ize combinatorial auctions according to a price-based de-
scription called the Price-Oriented, Rationing-Free mecha-
nism [15]. Second, in Section 3, under a mild and reasonable
independence of irrelevant good conditions, we show that the
worst-case efficiency ratio of any false-name-proof mecha-
nism is at most 2

m+1
. This upper bound holds even if we

assume that all bidders are single-minded.
Third, in Section 4, we examine the worst-case efficiency

ratio of existing false-name-proof mechanisms and show that
the worst-case efficiency ratio of a trivial mechanism, called
the Set mechanism, is 1

m
, while it is 0 for other more so-

phisticated mechanisms. If we assume that all bidders are
single-minded, then a mechanism called the Minimal Bun-
dle (MB) mechanism also achieves the worst-case efficiency
ratio 1/m, and it dominates the Set mechanism in terms of
efficiency.

Finally, in Section 5, we develop a new mechanism called
the adaptive reserve price (ARP) mechanism, which is false-
name-proof when all bidders are single-minded, and its worst-
case efficiency ratio is 2

m+1
. This ratio matches the theoret-

ical upper bound.

2. MODEL
Let N = {0, 1, 2, . . . , n} be the set of bidders and let

M = {g1, g2, . . . , gm} be the set of goods. Each bidder i
has preferences over the bundles B ⊆ M . We model this by
supposing that bidder i privately observes a parameter, or
signal, θi, which determines his/her preferences. We refer to
θi as the type of bidder i, which is drawn from Θ . We also
assume a quasi-linear, private value model with no allocative
externalities, i.e, the utility of bidder i when i obtains bun-
dle (subset of goods) B ⊆ M and pays p is assumed to equal
v(B, θi) − p. We assume that v(∅, θi) = 0 and that there is
free disposal, i.e., v(B′, θi) ≥ v(B, θi) for all B′ ⊇ B.

In a context where false-name bids are not possible, an
auction mechanism is (dominant-strategy) incentive compat-
ible (or strategy-proof ) if declaring the true type/valuation
is a dominant strategy for each bidder, i.e., an optimal strat-
egy regardless of the actions of other bidders.

In this paper, we extend the traditional definition of incen-
tive compatibility so that it can address false-name manipu-
lations, i.e., we say that an auction mechanism is (dominant
strategy) incentive compatible if using a single identifier and
declaring the true type under that identifier is a dominant
strategy for each bidder. To distinguish between the tra-
ditional and extended definitions of incentive compatibility,
we refer to the traditional concept as strategy-proofness and
to the extended definition as false-name-proofness.

We also restrict our attention to individually rational mech-
anisms, where no participant suffers any loss in a dominant-
strategy equilibrium, i.e., the payment never exceeds the
evaluation value of the obtained goods. Moreover, we re-
strict our attention to deterministic mechanisms, which al-
ways obtain the same outcome for the same input.

Under these assumptions, we describe combinatorial auc-
tion mechanisms according to a general framework for de-
scribing strategy-proof mechanisms called Price-Oriented,
Rationing-Free (PORF) mechanisms [15]. By describing
a mechanism as a PORF, proving that the mechanism is
strategy-proof or false-name-proof becomes much easier. Sim-
ilar price-based representations have also been presented by
others, including [9].

Under a PORF mechanism, each bidder i declares his type
θ̃i, which is not necessarily the true type θi. For each i and
bundle B ⊆ M , the price p(B, Θ̃−i) is defined, where Θ̃−i

is a set of declared types other than i. This price must be
determined independently of i’s declared type θ̃i, while it can
be dependent on declared types of other bidders. We assume
the pricing rule is anonymous, i.e., a single pricing rule is
used for all agents and it is defined on the set of other agents’
types. Thus, if two agents have exactly the same type, they
will face the same prices. We assume p(∅, Θ̃−i) = 0 and for

any B ⊆ B′, p(B, Θ̃−i) ≤ p(B′, Θ̃−i) holds.
A PORF mechanism allocates to bidder i a bundle B∗ so

that B∗ = arg maxB⊆M v(B, θ̃i) − p(B, Θ̃−i). Bidder i pays

p(B∗, Θ̃−i). If there exist multiple bundles that maximize
i’s utility, one of these bundles is allocated.

The pricing rule must be defined so that the allocation
satisfies allocation feasibility, i.e., for two bidders i, j and
bundles allocated to these bidders B∗

i and B∗
j , B∗

i ∩B∗
j = ∅

holds. This condition guarantees that a PORF mechanism
is strategy-proof. The price of bidder i for each possible
bundle is determined independently of i’s declared type, and
he/she can obtain the bundle that maximizes his/her utility
independently of the allocations of other bidders, i.e., the
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mechanism is rationing-free.
Furthermore, we are introducing symmetry for prices across

goods to the pricing rule. Let us define ρ as a permutation of
goods or types. ρ(B) is a bundle where the goods in B are
renamed. ρ(θi) is a new type θ′

i, where v(B, θi) = v(ρ(B), θ′
i)

holds for all B ⊆ M . ρ(Θ̃) is a set {ρ(θi)|θi ∈ Θ̃}. Now, we
are ready to introduce symmetry for prices across goods.

Definition 1 A pricing rule is symmetric across goods if,
for all i, ρ, Θ̃, B, p(B, Θ̃−i) = p(ρ(B), ρ(Θ̃−i)).

This condition means that the names of goods do not af-
fect the prices of goods. Almost all well-known mechanisms,
in particular all existing false-name-proof mechanisms, sat-
isfy this condition.

Finally, we introduce the worst-case efficiency ratio. Let
Θ̃ be a (multi)set of declared types (bids). Let sM(Θ̃) be
the social surplus that mechanism M achieves on this set
of bids, and let s∗(Θ̃) be the corresponding Pareto efficient
social surplus. The ratio of M is defined as:

inf
Θ̃

sM(Θ̃)

s∗(Θ̃)
.

3. UPPER BOUND ON THE WORST-CASE
EFFICIENCY RATIO

This section prove that the worst-case efficiency ratio of
any false-name-proof mechanism is at most 2

m+1
under an

apparently minor condition in false-name-proof combinato-
rial auction mechanisms with m different goods.

Definition 2 (Independence of irrelevant good (IIG))
Assume bidder i is winning all goods. If we add an additional
good that is wanted only by bidder i, and the valuation of i
for all goods is larger than or equal to some constant c, then
i still wins all goods.

The condition is intuitively reasonable. Accordingly, it
is satisfied in almost all well-known mechanisms, in partic-
ular in all existing false-name-proof mechanisms, as far as
the authors aware. This is true for a mechanism that uses
predefined reserve prices, such as the LDS mechanism [16]
assuming c is large enough compared to the reserve price.

It should be emphasized that the IIG is different from typ-
ical Independence of Irrelevant Alternatives (IIA), which are
often quite strong and apply to a wide variety of situations.
This condition applies only to very specific situations, and
we feel that it is quite mild. Nevertheless, while introducing
some technical conditions to characterize a certain class of
mechanisms is a common practice in mechanism design, we
hope to remove this condition in our future work.

Consider the following situation (Case 1), with m goods
and two bidders with the single-minded valuation functions.

Case 1

bidder 0: c for goods g1 to gm (all or nothing),
bidder 1: c − ε for good g1.

Lemma 1 Any deterministic, symmetric, strategy-proof mech-
anism satisfying IIG whose worst-case efficiency ratio is non-
zero will allocate all the goods to bidder 0 in Case 1.

Proof. To prove that the lemma holds for all m, we use
mathematical induction on m.

Base case.

Case 2

bidder 0: c for good g1,
bidder 1: c − ε for good g1.

Let us prove that bidder 0 wins in Case 2. To derive a con-
tradiction, let us first assume that the mechanism allocates
good g1 to bidder 1 in Case 2. Consider the following case:

Case 3

bidder 0: c for good g1,
bidder 1: c for good g1.

Since we assume that the mechanism is deterministic, either
bidder 0 or 1 must lose. Then, the losing bidder can under-
declare his valuation and make the situation identical to
Case 2. This bidder will win the good for at most c− ε and
hence have positive utility. This contradicts the assumption
that the mechanism is strategy-proof. Thus, bidder 1 cannot
win in a strategy-proof mechanism. Also, since we assume
that the worst-case efficiency ratio is non-zero, bidder 0 must
win in Case 2. Therefore, the lemma holds for m = 1.

Induction step.
Let us assume that the lemma holds for m = k, i.e., the

mechanism allocates all goods to bidder 0 in this case. We
show that it still allocates all goods to bidder 0 in the case
where m = k + 1:

Case 4

bidder 0: c for goods g1 to gk+1,
bidder 1: c − ε for good g1.

By IIG and the induction hypothesis, bidder 0 still wins all
goods, since only bidder 0 is interested in good k + 1.

Now, consider Case 5 with m goods and n + 1 = m + 1
bidders.

Case 5

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder j (2 ≤ j ≤ m): c/2 − ε for good gj .

Lemma 2 Any deterministic, symmetric, false-name-proof
mechanism satisfying IIG whose worst-case efficiency ratio
is non-zero will allocate all the goods to bidder 0 in Case 5.

Proof. To prove this lemma, we use mathematical in-
duction on the number of bidders, while keeping m fixed,
that is, we consider the case where some of the last bidders
are removed, without removing the corresponding goods.

Base case.

Case 6

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder 2: c/2 − ε for good g2.
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Figure 1: Bids in Case 1, 6, and 7.
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Figure 2: Bids in Case 8, 9, and 10.

First, let us assume that bidder 1 wins and bidder 2 loses.
Since false-name-proofness includes strategy-proofness, Lemma
1 holds. Then, in Case 1 where bidder 1 is losing, bidder 1
has an incentive to use a false-name and make the situation
identical to Case 6, i.e., bidder 1, who obtains no good in
Case 1, can obtain good g1 for at most c − ε in this way
(Figure 1 (a)). This contradicts the assumption that the
mechanism is false-name-proof.

Now, let us assume that bidder 2 wins in Case 6. Consider
the following case:

Case 7

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder 2: c − ε for good g2.

In Case 7, bidder 2 must win at a price of at most c/2 −
ε; otherwise, he has an incentive to under-bid to c/2 − ε,
making the situation identical to Case 6 (Figure 1 (b)). Let
us consider permutation ρ, which exchanges the names of
g1 and g2 while other names remain unchanged. In this
situation, ρ(θ2) = θ1, ρ(θ0) = θ0, and ρ({g1}) = {g2} hold.
From the symmetric pricing rule across goods in Definition 1,

p({g1}, {θ0, θ2}) = p(ρ({g1}), ρ({θ0, θ2}))
= p({g2}, {θ0, θ1}) ≤ c/2 − ε.

Thus, bidder 1 also wins and his payment is at most c/2− ε.
But then, in Case 1, where bidder 1 is losing from Lemma 1

by false-name bidding, he can make the situation identical to
Case 7, thereby winning goods g1 and g2 and paying at most
2(c/2 − ε) (Figure 1 (c)). Thus, for bidder 1, using a false-
name manipulation is profitable, since his utility increases
from 0 to at least c − ε − 2(c/2 − ε) = ε. This contradicts
the assumption that the mechanism is false-name-proof.

Thus, neither bidder 1 nor bidder 2 is a winner in Case 6.
Since we assume the worst-case efficiency ratio is non-zero,
bidder 0 must win. Therefore, the lemma holds for n = 2.

Induction step.
Let us assume that the lemma holds for n = k, i.e., the

mechanism allocates m goods to bidder 0 in Case 8.

Case 8

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder j (2 ≤ j ≤ k): c/2 − ε for good gj .

Then, we show that it still allocates m goods to bidder 0
in the following case with n = k + 1 (Case 9).

Case 9

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder j (2 ≤ j ≤ k + 1): c/2 − ε for good gj .

First, assume that bidder 1 wins, but none of the bidders
from 2 to k + 1 win. Then, in Case 8, bidder 1 has an
incentive to use a false-name-bid and make the situation
identical to Case 9 (Figure 2 (a)). Thus, it is impossible
for the mechanism to choose only bidder 1 as the winner.
Second, if bidder 0 never becomes the winner, from the non-
zero efficiency assumption, at least one of the bidders from
2 to k+1 wins. Thus, w.l.o.g., we assume that bidder k + 1
wins. Then, consider the following case:

Case 10

bidder 0: c for goods g1 to gm,
bidder 1: c − ε for good g1,
bidder j (2 ≤ j ≤ k): c/2 − ε for good gj ,
bidder k + 1: c − ε for good gk+1.

In Case 10, bidder k+1 must win and his payment must be
at most c/2− ε; otherwise, he has an incentive to under-bid
to c/2 − ε, making the situation identical to Case 9 (Fig-
ure 2 (b)). Let us consider permutation ρ, which exchanges
the names of g1 and gk+1 while other names remain un-
changed. Then, in this situation, ρ(θk+1) = θ1, ρ(θi) = θi

for i = 0, 2, . . . , k, and ρ({g1}) = {gk+1} hold. From the
symmetric pricing rule across goods in Definition 1,

p({g1}, {θ0, θ2, . . . , θk+1}) = p(ρ({g1}), ρ({θ0, θ2, . . . , θk+1}))
= p({gk+1}, {θ0, θ1, . . . , θk}) ≤ c/2 − ε.
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Thus, bidder 1 also wins and his payment is at most c/2− ε.
However, in Case 8, bidder 1 can submit a false-name

bid as bidder k + 1 and make the situation identical to
Case 10 (Figure 2 (c)). Then, bidder 1 obtains goods g1

and gk+1, pays at most 2(c/2− ε), and his utility is at least
c − ε − 2(c/2 − ε) = ε > 0. Thus, using a false-name-bid
is profitable for bidder 1. This contradicts the assumption
that the mechanism is false-name-proof. It follows that none
of the bidders from 2 to k + 1 can win in Case 9. Since the
mechanism has a non-zero worst-case efficiency ratio, bidder
0 must win.

Theorem 1 For any deterministic, symmetric, false-name-
proof mechanism satisfying IIG with m goods and n + 1 (≥
m + 1) bidders, the worst-case efficiency ratio is at most

2
m+1

. This is true even if we assume all bidders are single-
minded.

Proof. From Lemma 2, in Case 5, any such mechanism
allocates all of the goods to bidder 0 unless its ratio is 0 (the
proof of Lemma 2 only uses single-minded bids). Thus, the
social surplus is c, while the Pareto efficient social surplus
is (c − ε) + (m − 1)(c/2 − ε). As a result, the worst-case
efficiency ratio is at most 2

m+1
.

4. EXISTING FALSE-NAME-PROOF MECH-
ANISMS

This section examines the worst-case efficiency ratios of
three existing false-name-proof mechanisms. First, the Set
mechanism is one of the simplest false-name-proof ones. It
allocates all goods to a single bidder, namely, the bidder
with the largest valuation for the grand bundle of all goods.
Effectively, it sells the grand bundle as a single good, in a
Vickrey/second-price auction.

Theorem 2 For Set with m different goods, the worst-case
efficiency ratio is 1

m
. This is true even if we assume all

bidders are single-minded.1

Proof. First, we show that the worst-case efficiency ratio
is at least 1

m
. Let vmax be the highest valuation for the grand

bundle (and hence, by free disposal, for any bundle); this is
the efficiency obtained by Set. In any allocation, there can
be at most m winners, and each winner can have a valuation
of at most vmax, hence no allocation has efficiency greater
than mvmax.

Let us prove that the ratio is at most 1
m

. Suppose that
bidder 0 values c on the bundle of all goods, whereas bidder
j ∈ [1, m] value c − ε on only gj . Set allocates all goods to
bidder 0, obtaining an efficiency of c even though m(c − ε)
is possible. Thus, the ratio is arbitrarily close to 1

m
. This is

true even if we assume all bidders are single-minded.

Second, the Minimal Bundle (MB) [15] mechanism can
be thought of as a modified version of Set. To describe
this mechanism, let us first introduce a minimal bundle. A
bundle B is called minimal for bidder i if for all B′ ( B,
v(B′, θi) < v(B, θi) holds. Instead of allocating all goods M
to bidder i who has the highest valuation, we first allocate

1Dobzinski and Nisan [5] discuss maximal-in-range mecha-
nisms, which include Set as a special case, though it does
not directly discuss the worst-case efficiency ratio for this
special case.

B ⊆ M to i, where B is a minimal bundle of i. Then, we
allocate B′ ⊆ M \B to another bidder j who has the highest
remaining valuation, where B′ is a minimal bundle of j, and
so on. The payment for an allocated bundle B is equal to
the highest valuation of another bidder for a bundle that is
minimal and conflicting with B. For a single-minded bidder,
the minimal bundle for him/her is uniquely determined.

Theorem 3 For MB with m different goods, the worst-case
efficiency ratio is 1

m
if we assume that all bidders are single-

minded. In general, the worst-case efficiency ratio is 0.

Proof. If all bidders are single-minded, then the ob-
tained social surplus of MB always dominates that of Set.
This is because the winner of Set is always included in the
winners of MB. Thus, the ratio is at least 1/m. Also, in the
situation of Theorem 2, the outcomes of Set and MB are
identical. Thus, the ratio is 1

m
.

For the general case, i.e., bidders who are not necessarily
single-minded, suppose that bidder 1 values 1 on g1, 2ε on
g2, and 1 on the both goods, whereas bidder 2 values 1 − ε
on only g1. The Pareto efficient allocation gives g2 to bidder
1 and g1 to bidder 2; the social surplus is 1+ ε. MB can give
bidder 1 either g1 or g2. The prices for g1 and g2 are 1 − ε
and 0, respectively. For bidder 1, obtaining g2 is better and
g1 remains unsold, and the social surplus is 2ε. Thus, the
ratio is 2ε/(1 + ε), which is arbitrarily close to 0.

Finally, let us examine the Leveled Division Set (LDS)
mechanism [16]. Since it is quite complicated and we focus
on the worst-case efficiency ratio, let us just note that it
must predetermine the reserve prices for each single good.
For two goods g1 and g2, if both r{g1} and r{g2} are 0, LDS
is identical to Set. So, we assume either r{g1} or r{g2} is
non-zero and derive the worst-case efficiency ratio.

Theorem 4 For LDS with m different goods, where at least
one reserve price is non-zero, the worst-case efficiency ratio
is zero. This is true even if we assume all bidders are single-
minded.

Proof. Let us assume, w.l.o.g., that the reserve price
r{g1} for good g1 is positive. If there exists only one bidder
i, whose valuation for g1 is r{g1} − ε, then LDS allocates
no good, resulting in a social surplus of 0, while the Pareto
efficient allocation allocates g1 to bidder i, resulting in a
social surplus of r{g1} − ε. Thus, the ratio is 0. This is true
even if we assume all bidders are single-minded.

5. AN ADAPTIVE RESERVE PRICE MECH-
ANISM

This section introduces a new mechanism that we call the
Adaptive Reserve Price (ARP) mechanism for single-minded
bidders.

Consider an auction with m goods, g1, . . . , gm. Let us as-
sume that all bidders are single-minded. A bidder is allowed
to bid on either the bundle of all goods or an individual
good. If a bidder bids on a bundle of at least two goods, it
is treated as a bid on all goods. First, let us precisely define
the ARP mechanism as a PORF mechanism. Let us denote
the highest bids for each bundle/good other than bidder i as
v−i
{g1,...,gm}, v−i

{g1}, . . . , v−i
{gm}. Then, let us denote the good

that has the k-th highest bid among g1, . . . , gm as g(k), i.e.,

we assume v−i
{g(1)} ≥ . . . ≥ v−i

{g(m)} holds.
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ARP first determines prices of bundles as follows:

p({g1, . . . , gm}, Θ−i) = max(v−i
{g1,...,gm}, v

−i
{g(1)}, 2v−i

{g(2)}).

p({g(1)}, Θ−i) =

8>>><
>>>:

max(v−i
{g(1)}, v

−i
{g1,...,gm}/2)

if v−i
{g1,...,gm} < 2v−i

{g(2)},

max(v−i
{g(1)}, v

−i
{g1,...,gm})

otherwise.

∀k ∈ [2, m], p({g(k)}, Θ−i) =

8>>><
>>>:

max(v−i
{g(2)}, v

−i
{g1,...,gm}/2)

if v−i
{g1,...,gm} < 2v−i

{g(1)},

max(v−i
{g(1)}, v

−i
{g1,...,gm})

otherwise.

Then, for bidder i, a bundle B∗ is allocated, which is de-
fined by B∗ = arg maxB⊆M v(B, θ̃i) − p(B, Θ̃−i). Bidder i

obtaining bundle B∗ pays p(B∗, Θ̃−i).
If there exist multiple bundles that maximize i’s utility,

ARP allocates one of these bundles. Since each agent is
single-minded, this occurs only when an agent is indifferent
between obtaining his desired bundle and obtaining noth-
ing (an empty bundle). If this is the case, we assume ARP
chooses one possible allocation that satisfies allocation feasi-
bility. In particular, whenever an allocation for two bidders
is possible, ARP chooses that allocation, i.e., there are at
most two winners.

Next, we show a more informal description of the ARP
mechanism. Let us denote the highest bids for each bun-
dle/good as v∗

{g1,...,gm}, v∗
{g1}, . . . , v∗

{gm} and w.l.o.g., as-
sume v∗

{g1} ≥, . . . ,≥ v∗
{gm}. Also, let us assume v∗

{g1,...,gm},
v∗
{g1}, . . . , v∗

{gm} are submitted by bidder 0, 1, . . . , m, respec-
tively. Then, in ARP, if v∗

{g1,...,gm} ≥ 2v∗
{g2}, all goods are

allocated to bidder 0. Otherwise, g1 is allocated to bidder 1
and g2 is allocated to bidder 2. No other goods are then
allocated.

Now, let us describe the basic idea of ARP. Set and MB
choose as winners the bidders with the highest bids on bun-
dles without considering how many goods are in those bun-
dles. In these, the worst-case efficiency ratio is no more than
1/m, as shown in Theorems 2 and 3. On the other hand,
LDS can choose a bidder who demands a small bundle, even
if he does not submit the highest bid, by using reserve prices.
However, because the reserve prices are fixed, the ratio is
zero, as shown in Theorem 4. The basic idea of ARP is to
base the reserve prices on the (other bidders’) declared bids.
The reserve price on the set of all goods is 2v∗

{g2}, which is
obtained by doubling the second highest bid among ones for
each single good. The reserve prices on good g1 and g2 are
v∗
{g1,...,gm}/2.
The following three examples illustrate how ARP works.

Example 1 Let us consider an auction with three bidders,
0, 1, and 2, and two goods, g1 and g2. The bidders have the
following valuations:

bidder 0: 5 for goods {g1, g2},
bidder 1: 4 for good g1,
bidder 2: 3 for good g2.

In VCG, bidder 1 and 2 buy g1 and g2 at 2 and 1, while
in MB, bidder 0 buys both goods at 4. In ARP, the price
for bidder 0 to buy both goods is

max(v−0
{g1,...,gm}, v

−0
{g(1)}, 2v−0

{g(2)}) = max(0, 4, 6) = 6.

Since his utility when obtaining all goods is negative, he
buys nothing. On the other hand, since v−1

{g1,...,gm} = 5 is

smaller than 2v−1
{g(2)} = 6, the price for bidder 1 to buy g1 is

max(v−1
{g1}, v

−1
{g1,...,gm}/2) = max(0, 2.5) = 2.5.

Since his utility when obtaining g1 is positive, he buys g1

at 2.5. Similarly, bidder 2 buys g2 at 2.5. In this case, ARP
achieves the Pareto efficient allocation. Even if bidder 1 and
2 are false-name bids by a single bidder whose valuation for
both goods is 7, using false-name bids does not increase his
utility, since the total payment does not change.

Example 2 There are three bidders and two goods.

bidder 0: 5 for goods {g1, g2},
bidder 1: 4 for good g1,
bidder 2: 2 for good g2.

In VCG and MB, the winners are the same as in Exam-
ple 1. In ARP, the price for bidder 0 to buy both goods is
max(0, 4, 4) = 4. Since his utility when obtaining them is
positive, he buys both goods. In VCG, if bidder 1 and 2 are
false-name bids of a single bidder whose valuation for both
goods is 6, submitting false-name bids benefits that bidder
because his payment decreases from 5 to 3+1 = 4. In ARP,
submitting false-name bids does not help the bidder because
he does not win any good.

Example 3 There are three bidders and two goods.

bidder 0: 5 for goods {g1, g2},
bidder 1: 6 for good g1,
bidder 2: 2 for good g2.

In VCG, bidder 1 and 2 buy g1 at 3 and g2 at 0, while
in MB, bidder 1 buys g1 at 5. In ARP, since v−1

{g1,...,gm} =

5 is greater than 2v−1
{g(2)} = 4, the price for bidder 1 to

buy g1 is max(v−1
{g1}, v

−1
{g1,...,gm}) = max(0, 5) = 5. Thus, he

buys g1 at 5. On the other hand, the price for bidder 2 to
buy g2 is max(v−2

{g1}, v
−2
{g1,...,gm}) = max(6, 5) = 6. Thus, he

buys nothing. In this case, only g1 is allocated. In VCG, if
bidder 1 and 2 are actually false-name bids of a single bidder
whose valuation for both goods is 7, the bidder can decrease
his payment from 5 to 3 + 0 = 3 . Meanwhile, in ARP,
submitting false-name bids does not decrease his payment
and he wins only g1.

We now show the key properties of ARP for single-minded
bidders.

Theorem 5 ARP with m different goods satisfies allocation
feasibility for single-minded bidders.

Proof. Let us assume bidders 0, 1, . . . , m submit v∗
{g1,...,gm},

v∗
{g1}, . . ., v∗

{gm}, respectively. For bidders other than these,
it is clear that they cannot obtain any positive utility. Thus,
to show allocation feasibility, it suffices to show that if bid-
der 0 wants {g1, . . . , gm}, then no other bidder 1, . . . , m can
obtain positive utilities.

Assume that bidder 0’s utility is positive when he obtains
{g1, . . . , gm}. For each 1 ≤ k ≤ m, v−0

g{(k)} = v∗
{gk} holds.

From the definition of ARP, we obtain

v∗
{g1,...,gm} > p({g1, . . . , gm}, Θ−0),

= max(v−0
{g1,...,gm}, v

−0
{g(1)}, 2v−0

{g(2)})

= max(v−0
{g1,...,gm}, v

∗
{g1}, 2v∗

{g2}).
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Thus, v∗
{g1,...,gm} > v∗

{g1} and v∗
{g1,...,gm} > 2v∗

{g2} hold.
We first show that for bidder 1, who is bidding v∗

{g1}, his
utility when obtaining {g1} is negative. Thus, p({g1}, Θ−1) >
v∗
{g1} holds. Since we assume bidders are single-mined,

v−1
{g1,...,gm} = v∗

{g1,...,gm} holds. When v−1
{g1} ≥ v∗

{g2} holds,

v−1
{g(1)} = v−1

{g1} holds. Also, for each 2 ≤ k ≤ m, v−1
{g(k)} =

v∗
{gk} holds. Since v∗

{g1,...,gm} > 2v∗
{g2} holds, we obtain

p({g1}, Θ−1) = max(v−1
{g(1)}, v

−1
{g1,...,gm})

≥ v∗
{g1,...,gm} > v∗

{g1}.

On the other hand, when v−1
{g1} < v∗

{g2} holds, v−1
{g(1)} = v∗

{g2}
also holds. Since v∗

{g1,...,gm} > 2v∗
{g2} holds, we obtain

p({g1}, Θ−1) = max(v−1
{g(1)}, v

−1
{g1,...,gm})

≥ v∗
{g1,...,gm} > v∗

{g1}.

Accordingly, bidder 1 cannot obtain positive utility by ob-
taining {g1}.

Next, for any bidder k who bids v∗
{gk}, where 2 ≤ k ≤ m,

we show that his utility when obtaining {gk} is non-positive.
Thus, p({gk}, Θ−k) ≥ v∗

{gk} holds. From our assumptions,

v−k
{g(1)} = v∗

{g1} holds. When v∗
{g1,...,gm}/2 < v∗

{g1},

p({gk}, Θ−k) ≥ v∗
{g1,...,gm}/2 > v∗

{g2} ≥ v∗
{gk}

holds. On the other hand, when v∗
{g1,...,gm}/2 ≥ v∗

{g1},

p({gk}, Θ−k) ≥ v∗
{g1,...,gm} > 2v∗

{g2} > v∗
{gk}

hold. Accordingly, bidder k cannot obtain positive utility
by obtaining {gk}.

As shown in [15], a PORF mechanism that satisfies alloca-
tion feasibility is automatically strategy-proof. Thus, ARP
is strategy-proof for single-minded bidders.

Theorem 6 ARP with m different goods is false-name-proof
for single-minded bidders.

Proof. Let us assume bidders 0, 1, . . . , m submit v∗
{g1,...,gm},

v∗
{g1}, . . . , v∗

{gm}, respectively. For bidders other than 0, 1,
and 2, it is clear that they cannot achieve positive utilities
even if they use false-name bids, since their prices never fall
below v∗

g2 . Thus, it suffices to consider the possibilities of
false-name bids by bidder 0, 1, and 2 only.

First, let us consider the possibility of a false-name bid
by bidder 0 and assume bidder 0 is actually interested in
bundle {gi, gj} for i and j(> i). Assume he uses identifiers

i′ and j′, and bids v∗′
{gi} and v∗′

{gj}, respectively, so that they

become winners. W.l.o.g., we assume v∗′
{gi} ≥ v∗′

{gj} holds.

To be winners, in addition to v−0
{g1,...,gm} < 2v∗

{gj}, v∗′
{gi} ≥

v∗
{g1} and v∗′

{gj} ≥ v∗
{g2} must hold. Thus, it is clear that

p({gi}, Θ−0 ∪ {j′}) ≥ v∗
{g1} and p({gj}, Θ−0 ∪ {i′}) ≥ v∗

{g2}
hold. The sum of the prices given to i′ and j′ is

p({gi}, Θ−0 ∪ {j′}) + p({gj}, Θ−0 ∪ {i′})
≥ max(v∗

{g1}, v
−0
{g1,...,gm}/2) + max(v∗

{g2}, v
−0
{g1,...,gm}/2)

≥ max(v∗
{g1}, v

−0
{g1,...,gm}) = p(Θ−0, {g1, . . . , gm}).

Thus, bidder 0 cannot decrease the payment using false-
name bids.

Next, we consider the possibility of false-name bids by
bidder 1. When bidder 1 is winning and v∗

{g1,...,gm} < 2v∗
g2

holds, his price for {g1} is given by

p({g1}, Θ−1) = max(v−1
{g1}, v

∗
{g2}, v

∗
{g1,...,gm}/2).

This price cannot be decreased by adding false-name bids.
On the other hand, when v∗

{g1,...,gm} ≥ 2v∗
g2 holds,

p({g1}, Θ−1) = max(v−1
{g1}, v

∗
{g2}, v

∗
{g1,...,gm}).

This price can be manipulated if he submits a false-name

bid v∗′
g2 on {g2}, using another identifier 2’, so that v∗′

g2 >
v∗
{g1,...,gm}/2 holds. Then he can decrease his price; we ob-

tain

p({g1}, Θ−1 ∪ {2′}) = max(v−1
{g(1)}, v

−1
{g1,...,gm}/2).

Since bidder 1 already obtains {g1} when not using a false-
name bid, v∗

{g1} > v∗
{g1,...,gm} must hold. Then, for 2’,

p({g2}, Θ−2′) = max(v∗
g2 , v∗

{g1,...,gm}/2).

Clearly, v∗′
g2 > v∗

g2 holds. Since, from the assumptions, v∗′
g2 >

v∗
{g1,...,gm}/2 holds, we obtain p({g2}, Θ−2′) < v∗′

g2 . As a
result, bidder 2’ must be a winner, and the total payment
is larger than, or at least equal to, the payment when not
using a false-name bid. If bidder 1 uses one more identifier

3′ and submits v∗′
{g3}, which is equal to v∗′

{g2} to {g3}, then

p({g2}, Θ−2′) = p({g3}, Θ−3′) = v∗′
{g2} = v∗′

{g3}.

In this case, the utilities of bidder 2′ and 3′ are 0. How-
ever, since ARP chooses an allocation that has two winners
whenever possible, either bidder 2′ or 3′ becomes a winner.
Thus, for bidder 1, it is impossible to decrease his payment
by submitting false-name bids.

Finally, we consider the possibility of false-name bids by
bidder 2. If bidder 2 is winning, his payment is

p({g2}, Θ−2) = max(v−2
{g2}, v

∗
{g3}, v

∗
{g1,...,gm}/2).

This price cannot be decreased by adding false-name bids.

Theorem 7 For ARP with m different goods, the worst-
case efficiency ratio is 2

m+1
for single-minded bidders.

Proof. ARP allocates m goods according to the declared
bids in the three following ways: Case i: {g1, . . . , gm} is
allocated to the bidder who bids v∗

{g1,...,gm}, Case ii: Only
good g1 is allocated to the bidder who bids v∗

{g1}, Case iii:
good g1 is allocated to the bidder who bids v∗

{g1} and good
g2 is allocated to the bidder who bids v∗

{g2}. Let us examine
the worst-case efficiency ratio in those cases.

In Case i, v∗
{g1,...,gm} ≥ v∗

{g1} and v∗
{g1,...,gm} ≥ 2v∗

{g2}
hold, and the social surplus sARP that ARP achieves is
v∗
{g1,...,gm}. In this case, let us show an upper bound on the

social surplus s∗ that the Pareto efficient allocation achieves.
Let us examine each bid vB in the Pareto efficient alloca-

tion. First, let us consider the case where |B| ≥ 2. Then,
vB ≤ v∗

{g1,...,gm} holds (otherwise, vB must be the largest bid
for all goods). Thus, vB/|B| ≤ v∗

{g1,...,gm}/2 holds, i.e., the
average value per good is at most v∗

{g1,...,gm}/2. Next, let us
consider the case where |B| = 1. If B = {g1}, vB ≤ v∗

{g1} ≤
v∗
{g1,...,gm} holds. Otherwise, vB ≤ v∗

{g2} ≤ v∗
{g1,...,gm}/2

holds. Since at most m goods belong to the Pareto efficient
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allocation, s∗ ≤ v∗
{g1,...,gm} + (m − 1)v∗

{g1,...,gm}/2 holds.
Thus, we obtain

sARP

s∗ ≥ v∗
{g1,...,gm}

v∗
{g1,...,gm}+(m−1)v∗

{g1,...,gm}/2
= 2

m+1
.

In Case ii, v∗
{g1,...,gm} < v∗

{g1} and v∗
{g1,...,gm} ≥ 2v∗

{g2}
hold and sARP is v∗

{g1}. Let us examine each bid vB in the
Pareto efficient allocation. First, let us consider the case
where |B| ≥ 2. Then, vB ≤ v∗

{g1} holds (otherwise, vB must
be the largest bid for all goods and v∗

{g1,...,gm} < v∗
{g1} does

not hold). Thus, vB/|B| ≤ v∗
{g1}/2 holds, i.e., the average

value per good is at most v∗
{g1}/2.

Next, let us consider the case where |B| = 1. If B =
{g1}, vB ≤ v∗

{g1} holds. Otherwise, vB ≤ v∗
{g2} holds. In

this case, from v∗
{g1,...,gm} < v∗

{g1} and v∗
{g1,...,gm} ≥ 2v∗

{g2},
vB ≤ v∗

{g2} < v∗
{g1}/2 holds. Since at most m goods belong

to the Pareto efficient allocation, s∗ ≤ v∗
{g1}+(m−1)v∗

{g1}/2
holds. Thus, we obtain

sARP

s∗ ≥ v∗
{g1}

v∗
{g1}+(m−1)v∗

{g1}/2
≥ 2

m+1
.

In Case iii, v∗
{g1,...,gm} < 2v∗

{g2} holds, and sARP is v∗
{g1}+

v∗
{g2}. Let us examine each bid vB in the Pareto efficient

allocation. First, let us consider the case where |B| ≥ 2.
Then, vB ≤ v∗

{g1,...,gm} holds (otherwise, vB must be the
largest bid for all goods). Since v∗

{g1,...,gm} < 2v∗
{g2} holds,

vB/|B| < v∗
{g2} holds, i.e., the average value per good is at

most v∗
{g2}. Next, let us consider the case where |B| = 1. If

B = {g1}, vB ≤ v∗
{g1} holds. Otherwise, vB ≤ v∗

{g2} holds.
Since at most m goods belong to s∗, s∗ ≤ v∗

{g1}+(m−1)v∗
{g2}

holds. Thus, we obtain

sARP

s∗ ≥ v∗
{g1}+v∗

{g2}
v∗
{g1}+(m−1)v∗

{g2}

=
2+(v∗

{g1}−v∗
{g2})/v∗

{g2}
m+(v∗

{g1}−v∗
{g2})/v∗

{g2}
≥ 2

m
,

which is greater than 2
m+1

.
Therefore, the worst-case efficiency ratio that ARP achieves

is at least 2
m+1

. Also, from Theorem 1, it cannot be more

than 2
m+1

. More specifically, let us assume the situation in
Case 9, where m = k + 1. In a Pareto efficient mechanism,
each gk ∈ [1, m] is allocated to bidder k. The obtained social
surplus is (c/2−ε)m+c/2. On the other hand, in ARP, both
goods are allocated to bidder 0. The obtained social surplus
is c. Then, the ratio is 2

(1+ε)m+1
, which can be made arbi-

trarily close to 2/(m + 1). Thus, the worst-case efficiency
ratio that ARP achieves is 2

m+1
.

The ARP mechanism is somewhat limited, i.e., it allocates
goods to at most two bidders. However, extending ARP so
that it can allocate three or more individual goods is not
easy. It might be impossible considering that the current
ARP already achieves the optimal worst-case efficiency ratio.

6. CONCLUSION
We showed that the worst-case efficiency ratio of any false-

name-proof mechanism that satisfies some apparently mi-
nor assumptions is at most 2

m+1
. We also showed that the

worst-case efficiency ratio of existing false-name-proof mech-
anisms is 1

m
or 0. Furthermore, we developed an optimal

mechanism, ARP, which is false-name-proof when all bid-
ders are single-minded. When bidders are not necessarily
single-minded, there still exists a gap between the upper

bound ( 2
m+1

) and the best ratio obtained by existing mech-

anisms ( 1
m

). In our future work, we hope to eliminate this
gap, either by developing a mechanism with a better ratio,
or by proving a tighter upper bound.
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